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Supplements

Success probability The output of a memory-less sensor can be described
by a conditional probability distribution p(y¢|s:, n:), which includes determin-
istic behaviour as a special case. Assuming statistically independent noise with
distribution p(n;), the signal transmission properties of the sensor are given by
p(yelse) = Znt p(yt|se, me)p(ne). Ideally, the sensor output should be equal to
the input signal, y; = s¢, so that p(y¢|s;) = 0y, s,. It is therefore meaningful to
quantify the performance of a sensor by the success probability

Q = p(yt=st), (1)

which is expected to peak at some optimum noise level within the context of
stochastic resonance.

Analytical model In general, the momentary response of a SR-sensor can
depend on the history of internal states of the system, as is the case in integrate-
and-fire-neurons. For simplicity, in the analytical model we only consider memory-
less sensors, which respond to the present input signal s; and noise value n;
independently from their former activity states.

We consider a bipolar stochastic sensor in which both the input signal s;
and the sensor output y; can only take on the values —1 and +1. The noise
values n;, however, are continuous gaussian random numbers with variance o2
and mean p =0, without any temporal correlations. We further assume that
these two values appear in the input signal with equal probalility, p(s;=—1)=
p(sy =+41) =0.5. By assuming two symmetric detection thresholds +6 (figure
3 lower right inset), together with symmetric white noise, it can be assured
that the distribution of sensor outputs p(y; = —1) = p(y; = +1) = 0.5 is also
symmetric, so that the mean, variance and entropy of y; remain constant even
if the noise level is changed. Hence, the expressions for I(S;Y") and Cy,(7) can
be slightly simplified. In particular, the autocorrelation can be reduced to the
non-normalized form Cyy(7) < (yYi+-), and, furthermore, will be considered
only for lagtime 7=1.

The sensor adds the noise n; to the binary input signal s;. If s;+n; exceeds
the upper threshold 6, the output y; is +1, if sy +n; falls below the lower
threshold —0, output y; is —1. For s;+mn: € [0, +6], the output is chosen
randomly between the two binary values +1 and —1.

We are interested in the case of a threshold 8 > 1 which exceeds the signal
amplitude, so that without the assistance of added noise the signal cannot be
detected. Adding a random noise value n; to a (say) positive input signal s; can
have three possible effects. If we consider the noise to be sufficiently positive
to lift the signal beyond the upper threshold, then the success probability QQ =
p(yr=+1| sy =+1) = p(yr =—1| sy = —1) will be increased. Alternatively, if
the noise happens to be strongly negative and draws the positive signal below
the lower threshold —6 then the success probability @ will be decreased. The
third possibility is that s;+n; remains sub-threshold. Such cases make the signal
transmission neither better nor worse.



It is intuitively clear that small noise levels will increase @, but as soon as
a considerable fraction of momentary noise levels n; exceeds 2+ (60 —1), the
success probability @ will fall again. In our case it is given by Q@ = Q(o) =
$+3] W(%) - W(%) |, where W(z)= %erf(\%) is a slightly rescaled error
function (see Derivation of success probability for a detailed derivation). As a
function of the noise level o, the success probability has a well-defined maximum.

In this sensor model, the mutual information I(Y’;S) can be expressed as a
strictly increasing function of the success probability: I(Q) = 1+Q log, @+ (1—
Q) log,(1-Q) (see Derivation of mutual information for a detailed derivation).

Since both I and @ require access to the sub-threshold signal s;, we turn
to the autocorrelation function Cy, of the sensor output. Since the mean g of
Yy is zero and its variance constant, we can use a non-normalized version of
equation(6). Furthermore, we restrict our analytical consideration to a single
lag-time 7 = 1, defining C = (y;y:+1). The modulus of this quantity, too,
can be expressed as a strictly increasing function of the success probability:
|IC(Q)] = | (stst41) | [1 —4Q(1—Q)], where (s¢s¢41) are the input correlations
(see Derivation of output autocorrelation for a detailed derivation).

Derivation of success probability The normalized Gaussian distribution
with zero-mean and standard deviation o is given by
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g(z,0) = e~3(@/o) 2)

For later convenience, we define a function W (z) via

z z 1 1 =z
W(;)Z/Og(li,(f) dl':2erf<\/§ 0_>7 (3)
where erf(z) = % foxe_t2 dt is the error function.

The success probability @ is given by

Q = plyr=+llsi=+1) =
1
= §-p(—0—1<nt<9—1)—|—
+ p(ne>0-1) (4)

The factor % accounts for the stochastic output of the unit in the case when

s¢+ny is sub-threshold. We can now express the probabilities as integrals over
Gaussians:



% (/ o(z,0 dx+/6+1g(x,o)dw> +
o
Next we use the function ) defined above:
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Derivation of mutual information The mutual information of the detector
output and the input signal is defined as

+

1v;S) = 3 ply.s) log, ( Py, ) > _

P)p(s)

= = Z s) log, (2p(yls)) - (7)

We explicitly go through all four terms:

21(Y; 5) Z p(yls) log, (2p(yls)) =
p(y=—1|5— 1)
ply=—1|s=+1) log,
p(y=+1[s=—1) log,
p(y=+1]s=+1) log,
Q log, (2Q)

(1-Q) log, (2(1 - Q)) +

(1-Q) logy (2(1 - Q)) +

Q log, (2Q) . (8)
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Therefore

I(Y;5) = @Qlog; (2Q) + (1 - Q) log, (2(1-Q))
= 14+Q logy(Q) + (1 - Q) logy(1 - Q). (9)

Derivation of output autocorrelations in the analytical model The
temporal correlations of the input signal can be expressed by the probability
q = p(s1=+1,s80=41) in the following way:

(841 5t) = (51 80) =

= > ps1,50) (51 %) =

50,51

= p(si=—1[so=—1)p(so=—1)[(-1)(-1)] +
+ plsi=—1so=+1)p(so=+1) [(=1)(+1)] +
+ plsi=+1so=—1)p(so=—1) [(+1)(=1)] +
+ plsi=+1so=+1)p(so=+1) [(+1)(+1)] =
= q¢(1/2)[1] +
+ (-9 (1/2)[-1]+
+ (-9 (1/2)[-1]+
+ ¢(1/2)[1] =2¢ -1 (10)
The temporal correlations in the output signal are given by
Cyy(r=1) = (Y41 %) = (Y1 Y0) =
= > p1v0) (b1 vo)- (11)

Consider for example the probability p(y; = +1,y90 = +1). There are four
different chains of events which can produce a sequence of two successive +1’s
in the output signal:



= pyi=+1ls1=—1)p(s1=—1|sp=-1)
p(yo=+1|so=—1)p(so=-1) +

+ py1=+1s1=—1)p(s1=—1[so=+1)
p(yo=-+1|so=+1)p(so=+1) +

+ pyr=+1ls1=+1)p(s1=+1|so=—-1)
p(yo=+1|so=—1)p(so=-1) +

+ plyr1=+1|s1=41)p(s1=~+1[so=+1)
p(yo=-+1|so=+1)p(so=+1) =
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QqQ(1/2) =
q

I+ e-1Q1-Q) =4 (12)

For symmetry reasons, p(y1 = —1,y0 = —1) = p(y1 = +1,y0 = +1) = A. In
the same way, p(y1 = +1,y0 = —1) = p(y1 = —1,y0 = +1) = B.

Since Zyo,ylp(yl,yo) =1=2A+ 2B, it follows that B = A.
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Knowing all four joint probabilities, we can proceed to compute the temporal
correlations in the output signal:

Cyy(r=1) = (y1y0) =
= A(-1)(-1)+ B(-1)(+1) +
+ B(+1)(—-1)+ A(+1)(+1)

= 2A-2B=
= (2¢-1[1-4Q(1-Q)]=
= (St41 5t) [1—4Q(1—Q)]- (13)

Soft thresholds and non-Gaussian noise As described above, the proba-
bilistic information transmission from the signal input s; to the output y; of a
sensor are defined by

“+o0
p(ytISt) = / p(yt|5t7 nt) p(nt) dny. (14)

— 0o

Here, p(yt|st,n:) characterizes the properties of a specific sensor type, and
p(ny) = Proi(ny) is the noise distribution.



In this work, we are considering sensors where signal and noise are com-
bined additively, so that p(yt|st,n:) can be replaced by a simpler conditional
probability that depends only on the sum z; = s; + ny:

P(yelse,ne) — p(ye | se+ne = x4 ) = p(ye|ay). (15)

Furthermore, in the case of bipolar sensors, where y; = +1 and y; = —1
are the only possible outputs, the sensor can be characterized by a response
Sfunction:

Pres(m) = p(yt = +1|xt = J}) (16)

For such additive, bipolar sensors, the success probability ) can be expressed
via the response function and the noise distribution as

Q = plyr=+1|sy = +1)
+oo
L Pres(z) p(ng = xz—1) dx
+oo
- / Pros() proi(z—1) da. (17)

So far in this Supplemental, we have only considered detectors with a piece-
wise constant respose function (that is, where P..s(x < —0) = 0 and Pr.5(—0 <=
r <= +0) = 1 and P..s(z > +0) = 1), and where the noise was normal dis-
tributed (see Fig.1(a)).

However, we can easily generalize our analytical model to permit arbitrary
response functions (for example, by using a smooth sigmoidal function rather
than one with hard thresholds) and non-Gaussian noise distributions. In order
to keep the symmetry p(y; = —1) = p(y; = +1) = 0.5 of the output signals
(which we have used to simplify our analytical derivation), we have to restrict
our choices to response functions with P.es(—2) = 1 — Pres(+2) and to noise
distributions with p,0;(—) = Pnoi(+x). One of the possible choices is sketched
in Fig.1(b).

The generalization of the model to smooth sigmoidal sensor responses and
non-Gaussian noise does only affect the success probability @ = Q(o) and its
dependence on the noise amplitude o. As long as Q(o) has a peak at some
optimum noise level o,,:, the strictly monotonous dependence of the mutual
information I and the output correlations Cy, on @ guaranty that I and C,,
will peak at the same noise level op¢.

Different types of detectors and multiplicative noise For all bipolar
sensors (with s; € {—1,4+1} and y; € {—1,+1}) a success probability can always
be defined as

+oo
Q- / Py = +1 | 80 = +1, ny) p(ny) dne. (18)



The general conditional probability p(y; = +1 | s = +1, n) includes not
only detectors where signal and noise are combined additively, but allows for an
arbitrary probabilistic dependence of y; on s; and n,. As long as the noise ny
is temporally un-correlated (and all variables s;, n, and y; are zero-mean) Cl,
and the MI will remain monotonous functions of Q.

However, it is not guaranteed that these objective functions will always have
a maximum as a function of the noise strength ¢. Consider, for example, a
sensor system where the zero-mean, temporally correlated signal s; is multiplied
with zero-mean, white noise n;, and where the product x; = sy *xn; is compared
with a hard or soft sigmoidal threshold, as above. In this case, the amplitude
modulated noise z; is also un-correlated, so that Cy, = 0, no matter how the
noise strength o is set. Thus, for such multiplicative systems, the output auto-
correlation is not in general a suitable objective function for adaptive SR. In
the context of neural systems, however, the assumptions of a symmetric bipolar
threshold and of completely un-correlated noise are not biologically plausible.
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Figure 1: Sketch of possible response functions (blue) and noise distributions
(green). (a) Piecewise constant Py.s(z) and Gaussian ppei(z). (b) Smooth
sigmoidal P,..s(x) and leptocurtic ppei(z)



